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Abstract— In this paper, the problem of guarding a circular
target wherein the Defender(s) is constrained to move along
its perimeter is posed and solved using a differential game
theoretic approach. Both the one-Defender and two-Defender
scenarios are analyzed and solved. The mobile Attacker seeks
to reach the perimeter of the circular target, whereas the
Defender(s) seeks to align itself with the Attacker, thereby
ending the game. In the former case, the Attacker wins, and
the Attacker and Defender play a zero sum differential game
where the payoff/cost is the terminal angular separation. In the
latter case, the Defender(s) wins, and the Attacker and Defender
play a zero sum differential game where the cost/payoff is the
Attacker’s terminal distance to the target. This formulation
is representative of a scenario in which the Attacker inflicts
damage on the target as a function of its terminal distance.
The state-feedback equilibrium strategies and Value functions
for the Attacker-win and Defender(s)-win scenarios are derived
for both the one- and two-Defender cases, thus providing a
solution to the Game of Degree. Analytic expressions for the
separating surfaces between the various terminal scenarios are
derived, thus providing a solution to the Game of Kind.

I. INTRODUCTION

The problem of guarding a target has many important
applications in real-world defense scenarios. One example is
protection of a building’s perimeter from mobile infiltrators,
which may be considered to be people, ground vehicles,
air vehicles, or even certain types of munitions. Isaacs
considered such a target guarding problem in his seminal
work on differential game theory [1, see Example 1.9.2].
There, the static target was a convex area. Recently, there
has been an interest in the defense of a mobile target, usually
represented by a point or disk (e.g. [2]).

We pose and analyze the target guarding problem wherein
the Defender (D) is constrained to move along the (static)
circular target perimeter and the mobile Attacker (A) moves
with simple motion. This problem is an instance of the
perimeter defense problem presented in [3], [4], [5]; these
works establish strategies for individual agents as well as
teams of Attackers and Defenders for targets of arbitrary
convex shape. One significant difference in the formulation
presented here is that we consider the game to terminate
when either A reaches the target (A wins), or D becomes
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aligned with A (D wins). The latter scenario may be thought
of as the Defender being able to neutralize the Attacker (at
a distance) with a highly directional weapon.

Because the perimeter is a circle and the Defender is con-
strained to move along the circle, this problem has a strong
connection to the Lady in the Lake differential game wherein
the pursuer runs along the shoreline of a lake (the circle) to
try and catch the evader who must swim to the shore from
inside the lake to escape [6], [7], [8]. Here, however, we are
essentially analyzing the Lady Outside the Lake game with
the agents’ roles reversed. The cost functional, in the case
that the Attacker can reach the perimeter, is identical to the
Lady in the Lake game.

This paper contains the following contributions: (i) the
one-on-one Attacker-win and Defender-win scenarios are
formulated and solved rigorously using a differential game
theoretic approach, verifying the saddle-point equilibrium
status of strategies existing in the literature [3]; (ii) analytic
expressions for the Value functions are derived for both
one-on-one scenarios; (iii) the two-Defender, one-Attacker
scenarios are formulated and the equilibrium strategies and
Value functions are derived; (iv) the entire state space is par-
titioned based on all of the different terminal scenarios, and
analytic expressions for the separating surfaces are derived.
The emphasis is on the analysis and proof methods, which
are based on differential game theory, in comparison to the
geometric methods used previously [3]. Sections II and III
cover the one- and two-Defender cases, respectively. In each
of those sections, both the Attacker-win and Defender(s)-win
scenarios are formulated and solved. Section IV concludes
the work.

II. ONE DEFENDER

This section formulates the target guarding problem
wherein the Defender (D) is constrained to move along
the circular target perimeter and the Attacker (A) moves
in the plane with simple motion. Figure 1 shows the local
coordinate system (black) used in much of the analysis
to appear, as well as the global (inertial) (x, y)-coordinate
system (green). The following assumptions are made on the
problem setup:
Assumption 1. The players’ speeds are such that vA ≤ vD.
Assumption 2. The initial separation angle is such that
θ(t0) = θ0 ∈ [0, π).

The (dimensional) kinematics, based on Fig. 1 are

f̄ (x̄, ū, t̄) = ˙̄x =

 ˙̄R
˙̄θ
˙̄β

 =

 −vA cosψ
vA
R̄

sinψ − vD
l

vD
l

 , (1)
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Fig. 1. Circular perimeter patrol with one Defender and one Attacker.

where θ ∈ [−π, π] is the angle of A’s position w.r.t. D
and β ∈ [0, 2π] represents the rotation of D about the
circle’s center w.r.t. a global (x, y)-plane. With the following
definitions,

R ≡ R̄

l
, t ≡ vDmax

l
t̄, uD ≡

vD
vDmax

, ν =
vA

vDmax

,

where vDmax
is the maximum Defender velocity and the

speed ratio 0 < ν ≤ 1, the kinematics in (1) are non-
dimensionalized:

f (x, u, t) = ẋ =

Ṙθ̇
β̇

 =

 −ν cosψ
ν 1
R sinψ − uD

uD

 . (2)

The Defender control lies in the range uD ∈ [−1, 1], and the
Attacker control lies in the range ψ ∈ [−π, π].

We define the Game of Kind as the question of whether
Attacker can reach the perimeter (R → 1) with non-zero
terminal separation angle (Attacker ‘wins’) or the Defender
can drive θ → 0 before the Attacker reaches the perimeter
(Defender ‘wins’). In the following sections, the surface
separating these two cases is derived and a Game of Degree
is specified and solved for each case.

Note that if vA > vD, the Attacker need only come
within some distance l < R̂ < vA

vD
wherein the Attacker

has the control authority to force θ → π. Similarly, when
vA ≤ vD, if at some point θ = 0 the game is over because
the Defender has sufficient control authority to keep θ = 0
regardless of the Attacker’s control. We assume that if θf = 0
the Defender has successfully intercepted the Attacker and
thwarted its attack. We refer to the question of whether the
Attacker wins (i.e. θf > 0) or the Defender wins (θf = 0)
as the Game of Kind.

A. Defender Win Scenario

In this section we are concerned with the Game of Degree
which takes place when D is able to drive θ → 0 before A
can reach the target. Here, the initial condition of the system
lies in the region RD, which is the region of win for the
Defender (see (28)). In this case, it is sensible for the agents
to play a zero-sum game over the cost functional

Jd = Φd (xf , tf ) = −Rf . (3)

The negative sign in (3) is present so that the Defender is
the minimizing player and the Attacker is the maximizing
player. That is, the Attacker seeks to get as close as possible
to Rf = 1 and the Defender seeks to maximize the terminal
distance. We refer to this game as the Game of Distance,
and denote it with subscript d, in general. If an equilibrium
exists, it’s Value function is defined as

Vd = min
uD(t)

max
ψ(t)

Jd = max
ψ(t)

min
uD(t)

Jd. (4)

The first order necessary conditions for equilibrium will be
developed in the subsequent analysis. The terminal constraint
for the Game of Distance is

φd (xf , tf ) = θf = 0. (5)

The final time, tf , is the first time for which θ(t) = 0.
Thus, the Terminal Surface is defined as the set of states
satisfying (5)

Td = {x | R ≥ 1 and θ = 0} . (6)

Assumptions 1 and 2 are retained for this analysis.
1) First Order Necessary Conditions for Optimality: The

kinematics remain unchanged from the previous analysis; the
Hamiltonian for the Game of Distance is

Hd = −σRν cosψ + σθ

(
ν

1

R
sinψ − uD

)
+ σβuD, (7)

where σ ≡
[
σR σθ σβ

]>
is the adjoint vector for the

Game of Distance. The Hamiltonian is a separable function
of the controls uD and ψ, and thus Isaacs’ condition [8], [1]
holds:

min
uD(t)

max
ψ(t)

H = max
ψ(t)

min
uD(t)

H .

The equilibrium adjoint dynamics are given by

σ̇R = −∂Hd

∂R
= νσθ

1

R2
sinψ, (8)

σ̇θ = −∂Hd

∂θ
= 0, (9)

σ̇β = −∂Hd

∂β
= 0. (10)

The terminal adjoint values are obtained from the transver-
sality condition [9]

σ>(tf ) =
∂Φd
∂xf

+ η
∂φd
∂xf

=
[
−1 0 0

]
+ η

[
0 1 0

]
=⇒

σRf
= −1

σθf = η

σβf
= 0.

(11)

Therefore, with (9)–(11), the following hold

σθ(t) = η, ∀t ∈ [t0, tf ] (12)
σβ(t) = 0, ∀t ∈ [t0, tf ] . (13)

Once again, since σβ(t) = 0 for all t ∈ [t0, tf ], the state
component β has no effect on the equilibrium trajectory or



the equilibrium control strategies. The terminal Hamiltonian
satisfies [9]

Hd(tf ) = −∂Φd
∂tf
− η ∂φd

∂tf
= 0, (14)

and dHd

dt = 0, so Hd(t) = 0 for all t ∈ [t0, tf ].
The equilibrium control actions of the Attacker and De-

fender maximize and minimize (7), respectively: H ∗
d =

maxψ minuD
Hd. In order to maximize (7) (with (12)),

the vector
[
cosψ sinψ

]
must be parallel to the vector[

σR
η
r

]
, giving

cosψ∗ =
−σR√
σ2
R + η2

R2

, sinψ∗ =
η

R
√
σ2
R + η2

R2

. (15)

If η < 0, this implies sinψ∗ < 0 due to (15). However, this
would mean the Attacker has a component of its motion that
points towards the Defender (see, e.g., Fig. 1). Thus, it must
be the case that η > 0. In order to minimize (7) (with (12)),
the Defender’s control must satisfy

u∗D = sign η = 1, (16)

since η > 0.
Substituting the equilibrium controls, (15) and (16), into

the Hamiltonian, (7), and evaluating at final time with (11)
and (14) gives

H ∗
d (tf ) = 0 =

νσ2
Rf√

σ2
Rf

+ η2

R2
f

+
νη2

R2
f

√
σ2
Rf

+ η2

R2
f

− η

=⇒ η = ±νRf

√
1

R2
f − ν2

.

Since η > 0, we have

η = νRf

√
1

R2
f − ν2

. (17)

2) Solution Characteristics: An expression for σR is
obtained by considering the Hamiltonian at a general time,
making the same substitutions as before, with the additional
substitution of (17):

H ∗
d (t) = 0 = ν

√
σ2
R +

η2

R2
− η

=⇒ σR = ±
√
η2

ν2
− η2

R2

= ±Rf
R

√
R2 − ν2

R2
f − ν2

.

Since σRf
< 0 (due to (11)) and σ̇R > 0 (due to (8) with (15)

and η > 0) it must be that σR(t) < 0 for all t ∈ [t0, tf ], thus

σR = −Rf
R

√
R2 − ν2

R2
f − ν2

. (18)

The retrograde equilibrium kinematics can be obtained by
substituting the equilibrium controls, (15) and (16), along
with the adjoints, (12), (13), and (18), into (2) which yields

R̊∗ = ν

√
1− ν2

R2
, θ̊∗ = 1− ν2

R2
, (19)

with the following boundary conditions

R(tf ) > 1, θ(tf ) = 0. (20)

Note that both R̊ and θ̊ are monotonically increasing
according to (19). Consider the differential equation obtained
by dividing the equations in (19)

dR

dθ
=

ν√
1− ν2

R2

=⇒ ν

[√
R2

ν2
− 1 + sin−1

( ν
R

)]R
Rf

= ν (θ − θf ) .

Define

g(R) =

√
R2

ν2
− 1 + sin−1

( ν
R

)
, (21)

=⇒ ν (g(R)− g(Rf )) = ν (θ − θf )

=⇒ θ (R;Rf , θf ) = g(R)− g(Rf ) + θf , θf ≤ θ < π.
(22)

Setting θf = 0 in (22) (i.e., θ(R;Rf , 0)) describes the equi-
librium flow field for the Game of Distance (i.e., assuming
the Defender can drive θ → 0 before the Attacker can reach
the target). The curve in (22) is the involute of a circle of
radius ν.

Up until now, we have considered θ to be in the range
[0, π), however, the results apply to the range (−π, 0] with
some slight modification.
Lemma 1. The surface

D ≡ {x | θ = π} , (23)

is a Dispersal Surface (c.f. [1]) wherein the Defender can
choose either uD = 1 or uD = −1 and both choices are
optimal. Furthermore, when θ < 0, the equilibrium control
are given by u∗D = −1 and sinψ∗ < 0.

Proof. Consider a state xD = (R0, θ0, β0) ∈ D . The sys-
tem (19) describes the evolution of the R and θ in backwards
time from Rf > 1 and θf = 0, assuming η > 0. For a
particular xf , where θf = 0, (19) may be integrated back to
xD . A symmetric solution can be constructed by switching
the sign of η and integrating the retrograde kinematics back
to xD . Now, let η < 0; then sinψ∗ < 0 from (15), and
u∗D = −1 from (16). Substitution into the Hamiltonian at
final time yields η = −νRf

√
1

R2
f−ν2 . Substituting all of

these into the Hamiltonian at general time yields the same
expression for σR as in (18). Then, from (2), the retrograde
kinematics are

R̊ = ν

√
1− ν2

R2
, θ̊ =

ν2

R2
− 1.



Clearly, these are the same kinematics as in (19) except
the sign of θ̊ is reversed. Thus, both sets of equilibrium
kinematics can be integrated back from xf to reach xD ,
noting that −π and π are equivalent. Note this method for
proving the presence of a Dispersal Surface is similar to the
one used for a problem with similar dynamics in [10].

As a consequence, Assumption 2 may be relaxed, and the
state space may be expanded to θ ∈ [−π, π].

Theorem 1 (Game of Distance Solution). The equilibrium
state feedback control strategies for the Game of Distance
are given by

ψ∗ = sign (θ) sin−1
( ν
R

)
, u∗D = sign (θ) . (24)

The Value of the game is

Vd(R, θ) = −Rf = −g−1 (g(R)− θ) . (25)

Proof. The expression for ψ∗ is obtained by substituting (17)
and (18) into (15), taking into account the sign of θ (due to
Lemma 1). Similarly, the Defender strategy is given by (16),
accounting for Lemma 1. The corresponding form of (22)
for the Game of Distance is

θ (R;Rf ) = g(R)− g(Rf ). (26)

Thus, (25) is obtained by rearranging this expression and
solving for Rf , with g(·) defined as in (21).

The Value function does not have a closed form analytic
expression since g−1 cannot be expressed in closed form.

The limiting case for the Game of Distance is one in which
Rf → 1; thus the surface

θGoK (R) = g(R)− g(1) (27)

partitions the state space into regions of win for the Defender
and Attacker, respectively,

RD = {x | |θ| ≤ θGoK(R)} (28)
RA = {x | |θ| > θGoK(R)} . (29)

B. Attacker Win Scenario

In the region of the state space in which the Attacker
‘wins’, we consider a Game of Degree wherein the players
max/min the terminal separation angle; we refer to this as
the Game of Angle. The cost/payoff functional is given as

J = Φ (xf , tf ) = θf . (30)

The Attacker seeks to maximize the terminal separation angle
whereas the Defender seeks to minimize.

Theorem 2 (Game of Angle Solution). The equilibrium state
feedback strategies for the Game of Angle match those of the
Game of Distance, i.e., are given by (24). The Value function
is given by

V (R, θ) = θf = θ − g (R) + g (1) . (31)
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Fig. 2. Full equilibrium flow field with ν = 0.8

Proof. This proof is based upon substitution of the proposed
equilibrium strategies and Value function into the Hamilton-
Jacobi-Isaacs (HJI) equation [1],

min
uD

max
ψ

{
l (x, uD, ψ, t) +

∂V

∂t
+ Vx · f (x, uD, ψ, t)

}
= 0,

(32)

where Vx is the vector
[
∂V
∂R

∂V
∂θ

∂V
∂β

]>
, and l represents

an integral cost component. First, note that the cost, (30),
has no integral component, and thus l = 0. Also, the
proposed Value function, (31) is not an explicit function
of time and thus ∂V

∂t = 0. The vector Vx is obtained by
differentiating (31) w.r.t. each state,

Vx =
[
−
√
R2−ν2

Rν 1 0
]
.

The (forward) equilibrium dynamics, f , are given by the neg-
ative of (19). Substituting all of these expressions into (32)
gives

∂

∂R
Ṙ+

∂V

∂θ
θ̇ =(

−
√
R2 − ν2

Rν

)(
−ν
√

1− ν2

R2

)
+

(
ν2

R2 − 1

)
= 0.

The proposed Value function is continuous and continuously
differentiable (except on the Dispersal Surface, D), and it
satisfies the HJI hyperbolic PDE.

C. Full Equilibrium Flow Field

With the analysis in Sections II-A and II-B, the entire (us-
able) state space can be filled with equilibrium trajectories.
Figure 2 shows (22) and (26) in the Attacker win and lose
regions, respectively.

Lemma 2. The Attacker’s equilibrium trajectory is a straight
line in the inertial (non-rotating) (x, y)-plane.

Proof. Consider Fig. 1 which shows the Attacker’s heading
angle, ψ̃, w.r.t. the inertial (x, y)-plane. The following rela-
tion holds

ψ̃ = β + θ + π − ψ



Thus, the time derivative of the global Attacker heading angle
is given as

˙̃
ψ = β̇ + θ̇ − ψ̇

Substituting (24) and (19) into the above gives

˙̃
ψ = 1 +

ν2

R2
− 1− ∂

∂t
sin−1

( ν
R

)
=
ν2

R2
−

 −1√
1− ν2

R2

( ν

R2

)
Ṙ

=
ν2

R2
+

 1√
1− ν2

R2

( ν

R2

)(
−ν
√

1− ν2

R2

)
= 0.

Because ˙̃
ψ = 0, the global Attacker heading angle is

constant, and thus the Attacker’s path is a straight-line in
the inertial (x, y)-plane.

III. TWO DEFENDERS

In this section, we consider the circular target guarding
game with two Defenders, D1 and D2, with the following
assumption:

Assumption 3. The two Defenders share the same maximum
speed: vD1max

= vD2max
= vDmax .

x
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l
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D2
vD2
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R̄

×I

vA
ψ̃

A
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γ

Fig. 3. Circular perimeter patrol with two Defenders and one Attacker.

The scenario is depicted in Fig. 3, and the (nondimen-
sional) kinematics of the system are given as

f (x,u, t) = ẋ =


Ṙ
γ̇
α̇

β̇

 =


−ν cosψ

ν
R sinψ − 1

2 (uD1 + uD2)
1
2 (uD1

− uD2
)

uD1

 .
(33)

The angle α is measured from D2 to the angular bisector (on
the side of A) of the positions of D1 and D2. Similarly, the
angle γ is measured as A’s angular offset w.r.t. this bisector.

Assumption 4. The relative angular position of the Attacker
is bounded such that −α ≤ γ ≤ α.

Although we impose Assumption 4, it is of little conse-
quence since the forthcoming solution would still apply for γ
outside this range by, for example, switching the designation
of D1 and D2. Just as in the analysis of the one-on-one
game, there are three “games” or questions of interest: 1)
can the Attacker reach the target (the Game of Kind), 2)
what is the equilibrium terminal angular separation between
the Attacker and the closest Defender (the Game of Angle),
and 3) what is the equilibrium terminal distance from the
target center (the Game of Distance).

Note that the rotation of the system w.r.t. the global x-
axis, β, has no effect on the optimality of the trajectories
as in the one-on-one analysis and is therefore omitted in the
following.

A. Game of Degree When Attacker Wins

Here, we consider the Game of Angle which applies to
the scenario when the Attacker is able to reach the target
(Rf = 1). The cost functional is given as

J = Φ (xf , tf ) = αf − |γf |, (34)

and we seek the Value of the game:

V (x) = min
u(t)

max
ψ(t)

J = max
ψ(t)

min
u(t)

J. (35)

This game terminates when the following condition is satis-
fied

φ (xf , tf ) = Rf − 1 = 0. (36)

1) First Order Necessary Conditions for Optimality: First,
form the Hamiltonian as

H = −λRν cosψ + λγ

(
ν

R
sinψ − 1

2
(uD1

+ uD2
)

)
+λα

1

2
(uD1

− uD2
) .

(37)

The equilibrium adjoint dynamics obey [9]

λ̇R = −∂H

∂R
= λγ

ν

R2
sinψ, (38)

λ̇γ = −∂H

∂γ
= 0, (39)

λ̇α = −∂H

∂α
= 0. (40)

From the transversality condition [9], the equilibrium termi-
nal adjoint values satisfy

λ>(tf ) =
∂Φ

∂xf
+ µ

∂φ

∂xf

=⇒
λR(tf ) = µ,

λγ(tf ) = − sign(γf ),

λα(tf ) = 1.

(41)

Because λ̇γ = λ̇α = 0 we have λγ(t) = − sign(γf ) and
λα(t) = 1 for all t ∈ [t0, tf ].



2) Solution Characteristics:

Lemma 3. For games terminating with γf 6= 0, the game’s
Value function and optimal strategies are that of the one-
on-one game: V = α − |γ| − g(R) + g(1), and ψ∗ =
sin−1

(
− ν
R sign(γf )

)
. The second Defender is redundant.

Proof. Suppose that γf < 0; substituting the corresponding
λγ and λα values into (37) gives

H = −λRν cosψ − ν

R
sinψ − uD2 . (42)

Note that uD1
does not appear in (42) and thus D1 has no

effect on the optimality of the trajectory and is therefore re-
dundant. Again, since the final time is free, the Hamiltonian,
at terminal time, is subject to (14) [9]; that is, H (tf ) = 0.
Since (33) are autonomous, we have H (t) = 0 for all t ∈
[t0, tf ]. Therefore, (42) is identical to the Hamiltonian for the
one-on-one case between the Attacker and D2. Furthermore,
the terminal condition is the same, and the cost functional is
identical since θ = α−|γ| = J , in this case. Thus, the Value
function for the one-on-one case, (31), and the equilibrium
Attacker heading control, (24) are the solution for this game
(making the appropriate substitution of θ = α − |γ|). The
− sign in the ψ∗ expression, in this case, accounts for the
case when γf > 0 in which the game plays out between the
Attacker and D1, by symmetry. In that case, the scenario is
a mirror image of Fig. 1 and the sign of uD1

is reversed (i.e.,
D1 moves clockwise) as is the sign of sinψ∗.

Since γf 6= 0 corresponds to either one-on-one game,
we focus our attention on the case when γf = 0. When
γf = 0, the Attacker terminates at a position which is
equidistant from the two defenders. Note that, according
to (41), λγ(tf ) = λγf is undefined when γf = 0. As before,
the Defenders seek to minimize the Hamiltonian, (37):

u∗D1
, u∗D2

= arg min
uD1

,uD2

H

= arg min
uD1

,uD2

uD1
(1− λγ) + uD2

(−1− λγ) .
(43)

Now, according to (43), if λγ > 1 or λγ < −1 then u∗D1
=

u∗D2
which means the Defenders should move in the same

direction. However, if this were the case then α̇ = 0 which
is clearly undesirable since α appears in the cost, J . Thus
the value of λγ is bounded:

− 1 ≤ λγ ≤ 1. (44)

By inspection, it is clear that the Defenders should seek to
minimize α̇ which occurs for

u∗D1
= −1, u∗D2

= 1. (45)

substituting in (41) and (45) into (37) leads to an expression
for µ:

H (t) = 0 = ν

√
λ2
R +

λ2
γ

R2
− 1

=⇒ λR = ±
√

1

ν2
−
λ2
γ

R2
.

Since Ṙf ∝ cosψf ∝ ν it must be that λRf
, ν < 0 in order

for the state of the system to penetrate the boundary. In order
to maximize the Hamiltonian, it must be that sinψ∗ ∝ λγ ;
thus, from (38), λ̇R(t) < 0 for all t ∈ [t0, tf ]. Therefore,
λR(t) < 0 for all t ∈ [t0, tf ], which leads to

λR = −
√

1

ν2
−
λ2
γ

R2
. (46)

Lemma 4. For games terminating with γf = 0, the equilib-
rium heading angle is

ψ∗ = sin−1
(
λγ

ν

R

)
, (47)

and is bounded by − sin−1
(
ν
R

)
≤ ψ∗ ≤ sin−1

(
ν
R

)
.

Proof. Substituting (46) with (45) into (37) gives

H = 0 = −ν
√

1

ν2
−
λ2
γ

R2
cosψ + λγ

ν

R
sinψ. (48)

The Attacker seeks to maximize the Hamiltonian, and thus

cosψ∗ = −
√

1−
ν2λ2

γ

R2
, sinψ∗ = λγ

ν

R
, (49)

and −1 ≤ λγ ≤ 1 according to (44), hence − ν
R ≤ sinψ∗ ≤

ν
R .

Lemma 5. The trajectories corresponding to λγ = ±1 sep-
arate the state space into regions of asymmetric termination
(γf 6= 0) and symmetric termination (γf = 0).

Proof. Suppose λγ = 1, then the Attacker’s equilibrium
strategy is identical to the one-on-one game with D2

(c.f. (24)). The trajectory is a straight line in the global (x, y)-
frame since the one-on-one game Attacker trajectories are
straight (due to Lemma 2). Trajectories with λγ < 1 lie on
one side of this surface and one-on-one trajectories (against
D2) lie on the other side.

Lemma 6. Attacker trajectories resulting in symmetric ter-
mination (γf = 0) are straight lines in the (x, y)-plane
terminating at a point I , where

I =
[
Ix Iy

]>
=
[
cos (β0 − α0) sin (β0 − α0)

]>
. (50)

Proof. The proof for straight-line Attacker trajectories fol-
lows along the same steps as Lemma 2 and is thus omitted.
For symmetric termination, the state of the system lies at
R = 1 and γ = 0. The γ = 0 angle corresponds to β − α.
Because u∗D1

= −1 and u∗D2
= 1 (due to (49)) we have

α̇ = −1 = β̇ and thus the angle β − α is invariant in the
global (x, y)-plane.

Lemma 7. For symmetric termination (γf = 0), the separat-
ing surface of the Game of Kind in the global (x, y)-plane
is given by a circular arc centered I with radius να0 whose
bounds are defined by sin−1(−ν) and sin−1(ν) relative to
the γ = 0 axis.

Proof. Symmetric termination trajectories terminate at I ,
defined and according to Lemma 6. The limiting case occurs
when the Attacker reaches the target circle at the exact



moment in which the Defenders reach I (i.e. αf → 0).
Due to (45), we have α̇ = −1. Therefore, the Defenders
reach α = 0 in α0 time. Symmetric termination trajectories
may thus extend from I for a maximum distance of να0;
beyond this distance, the Attacker cannot reach the target.
The Attacker trajectories are straight, also due to Lemma 6,
thus the Game of Kind surface is a circular arc. The bounds
of the circular arc are given directly by the range of ψ∗f which
is obtained by substituting R = 1 into (47) and applying the
bounds stated in Lemma 4.

The regions Ra1 and Ra2 are the sets of states for which
the game terminates with γf > 0 (one-on-one with D1) and
γf < 0 (one-on-one with D2), respectively (c.f. Lemma 3).
Similarly, the region Ra1,2 is the set of states for which the
game terminates with γf = 0 and is completely specified
by Lemmas 5–7. The polar distance at which the Game of
Kind surface switches from the one-on-one surface, governed
by (27), and the two-on-one surface, described in Lemma 7,
is given by

Rs = +

√
ν2α2 + 1 + 2να

√
1− ν2, (51)

which is derived from the Law of Cosines (see Fig. 4).

Theorem 3. In the region Ra1,2 , the equilibrium Attacker
heading angle is given by

ψ∗ = sin−1

(
sin γ

p

)
, (52)

and the associated Value function is

V (x) = αf = α− p

ν
, (53)

where
p = +

√
R2 + 1− 2R cos γ.

Proof. Consider the triangle formed by the Attacker’s po-
sition, the target circle center, and the point I as defined
in (50). By construction, the Attacker starts in Ra1,2 and its
equilibrium trajectory must terminate at I due to Lemma 6.
Let the distance traveled from A0 to I be p, which can be
obtained from the Law of Cosines (as defined above). Then,
(52) can be obtained from the Law of Sines. The time taken
to traverse this path is p/ν, and α̇ = −1 (due to (45)),
thus (53) follows.

B. Game of Degree When Attacker Loses

In this section, we focus on the Game of Distance which
applies to the scenario when A is not able to reach the target
before one or both Defenders can align with A (i.e. α−|γ| =
0). The cost functional is the same as in the one-on-one case,
i.e., (3). This game terminates when the following condition
is satisfied

φ (xf , tf ) = αf − |γf | = 0. (54)

The formal analysis of this can be carried out in much the
same way as in Section III-A and is omitted for space.

1) Solution Characteristics:

Lemma 8. For games terminating with γf 6= 0, the game’s
Value function and optimal strategies correspond to the one-
on-one game (c.f. Theorem 1). The second Defender is
redundant.

Proof. The proof is similar to that of Lemma 3 in that the
Hamiltonian is formed and a particular sign of γf is assumed,
which results in reduction to the one-on-one Hamiltonian
with identical cost and terminal boundary condition. These
details are omitted for space.

Lemma 9. For games terminating with γf = 0, the equilib-
rium Attacker heading angle is

ψ∗ = sin−1
(
χ
ν

R

)
, χ ∈ [−1, 1] . (55)

Proof. The proof is similar to that of Lemma 4, but with the
associated first order necessary conditions for the Game of
Distance, which are omitted.

Lemma 10. The trajectories corresponding to χ = ±1
separate the state space into regions of solo capture (γf 6= 0)
and dual capture (γf = 0).

Proof. The result follows from substitution of χ = 1 or χ =
−1 into (55).

Lemma 11. Attacker trajectories resulting in dual capture
(γf = 0) are straight lines in the (x, y)-plane terminating at
a point I ′ where

I ′ =

[
I ′x
I ′y

]
=

[
Rf cos (β0 − α0)
Rf sin (β0 − α0)

]
. (56)

Proof. The angle β0 − α0 corresponds to the γ = 0 axis,
which, as in Lemma 6, is invariant. Proving the straightness
of the trajectories follows a similar process as shown in
Lemma 2 and is omitted.

Lemma 12. The surfaces separating solo and dual capture
are given by the expression

w
(
R̂
)

= ±ν
2α

Rf
, (57)

where R̂ = R cos (γ) = Rf + να
√

1− ν2

R2
f

is the po-
lar distance measured along the γ = 0 axis and w is
measured perpendicular to the γ = 0 axis, and R̂ ∈[
1 + να0

√
1− ν2,∞

]
.

Proof. As in Lemma 7, the dual capture trajectory terminates
in α time (since α̇∗ = −1 and α = 0 in the dual capture
scenario). The dual capture trajectories are thus straight lines
(due to Lemma 11) of length να0 which terminate at I ′,
as defined in Lemma 11. Consider the upper limit of ψ∗f ,

which is given by (55) with χ = 1 to be ψ∗ = sin−1
(
ν
Rf

)
.

The corresponding distance perpendicular to the γ = 0 axis
is w = sin sin−1

(
ν
Rf

)
· να0 = ν2α0

Rf
. This w corresponds

to a position which is να0

√
1− ν2

Rf
further than Rf , i.e.,



Ra2

Ra1

Ra1,2

Rd2

Rd1

Rd1,2

I

I ′

Rs

να

sin−1 ν

α D1

D2

Fig. 4. Separating surfaces for the two Defender game in the realistic
plane for α0 = 3π

4
and ν = 0.8. Representative Attacker trajectories are

shown in the symmetric termination regions and Defender 1 regions. Open
black circles denote different Attacker initial positions, black ×’s denote
the corresponding terminal Attacker positions.

R̂ = Rf +να0

√
1− ν2

R2
f

. Taking the lower limit of ψ∗f gives
the corresponding negative width.

We define the regions Rd1 and Rd2 as the sets of states
for which the game terminates with γf > 0 (one-on-one
with D1) and γf < 0 (one-on-one with D2), respectively
(c.f. Lemma 8). Similarly, we define the region Rd1,2 as
the set of states for which the game terminates with γf = 0
which is completely specified by Lemma 7 and Lemmas 10–
10.
Theorem 4. For states in the region Rd1,2 the equilibrium
Attacker heading angle is

ψ∗ = γ + sin−1

(
R sin γ

να

)
(58)

and the Value function is

V (x) = −Rf = να
sinψ∗

sin γ
. (59)

Proof. The result follows from Lemmas 9–11 via a geomet-
ric proof process very similar to Theorem 3; the details are
omitted.

C. Full Solution
The two Defender game is truly three dimensional (in

the reduced state space, i.e., R, γ, α). Although one may
obtain the equilibrium flowfield over the whole state space
by substituting the equilibrium strategies into the kinematics,
it is more illustrative to visualize the solution in the (x, y)-
plane for a particular α. Figure 4 shows the full solution
of the two-Defender one-Attacker game, including all of the
separating surfaces, regions, and salient features along with
several representative Attacker trajectories.

IV. CONCLUSION

The problem of guarding a circular target by patrolling its
perimeter was considered. We formulated the one-Defender
one-Attacker and two-Defender one-Attacker scenarios as
zero-sum differential games with different cost/payoff func-
tionals depending on whether the Attacker could reach the
target’s perimeter before the Defender(s) could ‘lock on’. The
analysis formally verifies that the Attacker heading strategy
given in the literature for the one-Defender scenario is indeed
the saddle-point equilibrium strategy for the games posed
here [3]. For the two-Defender scenario, the state space was
partitioned into regions based on the equilibrium termination
condition. Analytic expressions for the separating surfaces
between these regions and Value functions for each case were
derived. The Attacker strategy in the Defenders-win, sym-
metric termination region differs from that of [3], partly due
to differences in the termination condition and cost/payoff
functional.

Future work on this problem may include investigating
different cost/payoff functionals, such as min max time for
the Attacker to reach the target. Additionally, understanding
the impact of these termination conditions on multi-Attacker
multi-Defender scenarios is of interest.
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